Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone‐depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O‐depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre‐industrial periods. Models show general agreement on the seasonal phasing of zonal‐average N2O fluxes for most sites, but seasonal peak‐to‐peak amplitudes differ several‐fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface‐troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre‐industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport‐chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon‐nitrogen cycles under ongoing global warming.more » « less
- 
            Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Emissions and atmospheric concentrations of CH4 continue to increase, maintaining CH4 as the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 for temperature change is related to its shorter atmospheric lifetime, stronger radiative effect, and acceleration in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the factors explaining the well-observed atmospheric growth rate arise from diverse, geographically overlapping CH4 sources and from the uncertain magnitude and temporal change in the destruction of CH4 by short-lived and highly variable hydroxyl radicals (OH). To address these challenges, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to improve, synthesise and update the global CH4 budget regularly and to stimulate new research on the methane cycle. Following Saunois et al. (2016, 2020), we present here the third version of the living review paper dedicated to the decadal CH4 budget, integrating results of top-down CH4 emission estimates (based on in-situ and greenhouse gas observing satellite (GOSAT) atmospheric observations and an ensemble of atmospheric inverse-model results) and bottom-up estimates (based on process-based models for estimating land-surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). We present a budget for the most recent 2010–2019 calendar decade (the latest period for which full datasets are available), for the previous decade of 2000–2009 and for the year 2020. The revision of the bottom-up budget in this edition benefits from important progress in estimating inland freshwater emissions, with better accounting of emissions from lakes and ponds, reservoirs, and streams and rivers. This budget also reduces double accounting across freshwater and wetland emissions and, for the first time, includes an estimate of the potential double accounting that still exists (average of 23 Tg CH4 yr-1). Bottom-up approaches show that the combined wetland and inland freshwater emissions average 248 [159–369] Tg CH4 yr-1 for the 2010–2019 decade. Natural fluxes are perturbed by human activities through climate, eutrophication, and land use. In this budget, we also estimate, for the first time, this anthropogenic component contributing to wetland and inland freshwater emissions. Newly available gridded products also allowed us to derive an almost complete latitudinal and regional budget based on bottom-up approaches. For the 2010–2019 decade, global CH4 emissions are estimated by atmospheric inversions (top-down) to be 575 Tg CH4 yr-1 (range 553–586, corresponding to the minimum and maximum estimates of the model ensemble). Of this amount, 369 Tg CH4 yr-1 or ~65 % are attributed to direct anthropogenic sources in the fossil, agriculture and waste and anthropogenic biomass burning (range 350–391 Tg CH4 yr-1 or 63–68 %). For the 2000–2009 period, the atmospheric inversions give a slightly lower total emission than for 2010–2019, by 32 Tg CH4 yr-1 (range 9–40). Since 2012, global direct anthropogenic CH4 emission trends have been tracking scenarios that assume no or minimal climate mitigation policies proposed by the Intergovernmental Panel on Climate Change (shared socio-economic pathways SSP5 and SSP3). Bottom-up methods suggest 16 % (94 Tg CH4 yr-1) larger global emissions (669 Tg CH4 yr-1, range 512–849) than top-down inversion methods for the 2010–2019 period. The discrepancy between the bottom-up and the top-down budgets has been greatly reduced compared to the previous differences (167 and 156 Tg CH4 yr-1 in Saunois et al. (2016, 2020), respectively), and for the first time uncertainty in bottom-up and top-down budgets overlap. The latitudinal distribution from atmospheric inversion-based emissions indicates a predominance of tropical and southern hemisphere emissions (~65 % of the global budget, <30° N) compared to mid (30° N–60° N, ~30 % of emissions) and high-northern latitudes (60° N–90° N, ~4 % of global emissions). This latitudinal distribution is similar in the bottom-up budget though the bottom-up budget estimates slightly larger contributions for the mid and high-northern latitudes, and slightly smaller contributions from the tropics and southern hemisphere than the inversions. Although differences have been reduced between inversions and bottom-up, the most important source of uncertainty in the global CH4 budget is still attributable to natural emissions, especially those from wetlands and inland freshwaters. We identify five major priorities for improving the CH4 budget: i) producing a global, high-resolution map of water-saturated soils and inundated areas emitting CH4 based on a robust classification of different types of emitting ecosystems; ii) further development of process-based models for inland-water emissions; iii) intensification of CH4 observations at local (e.g., FLUXNET-CH4 measurements, urban-scale monitoring, satellite imagery with pointing capabilities) to regional scales (surface networks and global remote sensing measurements from satellites) to constrain both bottom-up models and atmospheric inversions; iv) improvements of transport models and the representation of photochemical sinks in top-down inversions, and v) integration of 3D variational inversion systems using isotopic and/or co-emitted species such as ethane as well as information in the bottom-up inventories on anthropogenic super-emitters detected by remote sensing (mainly oil and gas sector but also coal, agriculture and landfills) to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GKQ9-2RHT (Martinez et al., 2024).more » « less
- 
            null (Ed.)Abstract. In this study, we present the first combined open- and coastal-ocean pCO2 mapped monthly climatology (Landschützer et al., 2020b, https://doi.org/10.25921/qb25-f418, https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html, last access: 8 April 2020) constructed from observations collected between 1998 and 2015 extracted from the Surface Ocean CO2 Atlas (SOCAT) database. We combine two neural network-based pCO2 products, one from the open ocean and the other from the coastal ocean, and investigate their consistency along their common overlap areas. While the difference between open- and coastal-ocean estimates along the overlap area increases with latitude, it remains close to 0 µatm globally. Stronger discrepancies, however, exist on the regional level resulting in differences that exceed 10 % of the climatological mean pCO2, or an order of magnitude larger than the uncertainty from state-of-the-art measurements. This also illustrates the potential of such an analysis to highlight where we lack a good representation of the aquatic continuum and future research should be dedicated. A regional analysis further shows that the seasonal carbon dynamics at the coast–open interface are well represented in our climatology. While our combined product is only a first step towards a true representation of both the open-ocean and the coastal-ocean air–sea CO2 flux in marine carbon budgets, we show it is a feasible task and the present data product already constitutes a valuable tool to investigate and quantify the dynamics of the air–sea CO2 exchange consistently for oceanic regions regardless of its distance to the coast.more » « less
- 
            Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).more » « less
- 
            null (Ed.)Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models.more » « less
- 
            Abstract Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
